(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PRIMESSIEVE(from(s(s(0))))
PRIMESFROM(s(s(0)))
FROM(X) → CONS(X, n__from(s(X)))
TAIL(cons(X, Y)) → ACTIVATE(Y)
IF(true, X, Y) → ACTIVATE(X)
IF(false, X, Y) → ACTIVATE(Y)
FILTER(s(s(X)), cons(Y, Z)) → IF(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
FILTER(s(s(X)), cons(Y, Z)) → ACTIVATE(Z)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
SIEVE(cons(X, Y)) → CONS(X, n__filter(X, sieve(activate(Y))))
SIEVE(cons(X, Y)) → SIEVE(activate(Y))
SIEVE(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__filter(X1, X2)) → FILTER(X1, X2)
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 10 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__filter(X1, X2)) → FILTER(X1, X2)
FILTER(s(s(X)), cons(Y, Z)) → ACTIVATE(Z)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
SIEVE(cons(X, Y)) → SIEVE(activate(Y))
SIEVE(cons(X, Y)) → ACTIVATE(Y)

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SIEVE(cons(X, Y)) → ACTIVATE(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:

POL( SIEVE(x1) ) = x1 + 2


POL( activate(x1) ) = x1 + 2


POL( n__from(x1) ) = 2x1


POL( from(x1) ) = 2x1 + 2


POL( n__filter(x1, x2) ) = max{0, x2 - 2}


POL( filter(x1, x2) ) = x2


POL( n__cons(x1, x2) ) = 2x1 + 2x2 + 2


POL( cons(x1, x2) ) = 2x1 + 2x2 + 2


POL( s(x1) ) = max{0, -2}


POL( if(x1, ..., x3) ) = 2x1 + 2x2


POL( divides(x1, x2) ) = 2x1 + x2 + 1


POL( sieve(x1) ) = max{0, 2x1 - 2}


POL( ACTIVATE(x1) ) = x1 + 2


POL( FILTER(x1, x2) ) = x2



The following usable rules [FROCOS05] were oriented:

activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
filter(X1, X2) → n__filter(X1, X2)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
cons(X1, X2) → n__cons(X1, X2)
from(X) → cons(X, n__from(s(X)))
from(X) → n__from(X)

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__filter(X1, X2)) → FILTER(X1, X2)
FILTER(s(s(X)), cons(Y, Z)) → ACTIVATE(Z)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
SIEVE(cons(X, Y)) → SIEVE(activate(Y))

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SIEVE(cons(X, Y)) → SIEVE(activate(Y))

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) Narrowing (EQUIVALENT transformation)

By narrowing [LPAR04] the rule SIEVE(cons(X, Y)) → SIEVE(activate(Y)) at position [0] we obtained the following new rules [LPAR04]:

SIEVE(cons(y0, n__from(x0))) → SIEVE(from(x0))
SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(filter(x0, x1))
SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
SIEVE(cons(y0, x0)) → SIEVE(x0)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SIEVE(cons(y0, n__from(x0))) → SIEVE(from(x0))
SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(filter(x0, x1))
SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
SIEVE(cons(y0, x0)) → SIEVE(x0)

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) Narrowing (EQUIVALENT transformation)

By narrowing [LPAR04] the rule SIEVE(cons(y0, n__from(x0))) → SIEVE(from(x0)) at position [0] we obtained the following new rules [LPAR04]:

SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0))))
SIEVE(cons(y0, n__from(x0))) → SIEVE(n__from(x0))

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(filter(x0, x1))
SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
SIEVE(cons(y0, x0)) → SIEVE(x0)
SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0))))
SIEVE(cons(y0, n__from(x0))) → SIEVE(n__from(x0))

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(filter(x0, x1))
SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
SIEVE(cons(y0, x0)) → SIEVE(x0)
SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0))))

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) Narrowing (EQUIVALENT transformation)

By narrowing [LPAR04] the rule SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(filter(x0, x1)) at position [0] we obtained the following new rules [LPAR04]:

SIEVE(cons(y0, n__filter(s(s(x0)), cons(x1, x2)))) → SIEVE(if(divides(s(s(x0)), x1), n__filter(s(s(x0)), activate(x2)), n__cons(x1, n__filter(x0, sieve(x1)))))
SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(n__filter(x0, x1))

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
SIEVE(cons(y0, x0)) → SIEVE(x0)
SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0))))
SIEVE(cons(y0, n__filter(s(s(x0)), cons(x1, x2)))) → SIEVE(if(divides(s(s(x0)), x1), n__filter(s(s(x0)), activate(x2)), n__cons(x1, n__filter(x0, sieve(x1)))))
SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(n__filter(x0, x1))

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
SIEVE(cons(y0, x0)) → SIEVE(x0)
SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0))))

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SIEVE(cons(y0, x0)) → SIEVE(x0)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SIEVE(x1)  =  x1
cons(x1, x2)  =  cons(x2)
n__cons(x1, x2)  =  x2
n__from(x1)  =  n__from

Knuth-Bendix order [KBO] with precedence:
trivial

and weight map:

cons_1=1
n__from=1

The following usable rules [FROCOS05] were oriented:

cons(X1, X2) → n__cons(X1, X2)

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0))))

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SIEVE(x1)  =  x1
cons(x1, x2)  =  cons(x2)
n__cons(x1, x2)  =  n__cons(x2)
n__from(x1)  =  n__from

Knuth-Bendix order [KBO] with precedence:
trivial

and weight map:

n__cons_1=1
n__from=1
cons_1=2

The following usable rules [FROCOS05] were oriented:

cons(X1, X2) → n__cons(X1, X2)

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0))))

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = SIEVE(cons(y0, n__from(x0))) evaluates to t =SIEVE(cons(x0, n__from(s(x0))))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [y0 / x0, x0 / s(x0)]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from SIEVE(cons(y0, n__from(x0))) to SIEVE(cons(x0, n__from(s(x0)))).



(25) NO

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FILTER(s(s(X)), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__filter(X1, X2)) → FILTER(X1, X2)

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FILTER(s(s(X)), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__filter(X1, X2)) → FILTER(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ACTIVATE(n__filter(X1, X2)) → FILTER(X1, X2)
    The graph contains the following edges 1 > 1, 1 > 2

  • FILTER(s(s(X)), cons(Y, Z)) → ACTIVATE(Z)
    The graph contains the following edges 2 > 1

(30) YES